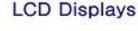
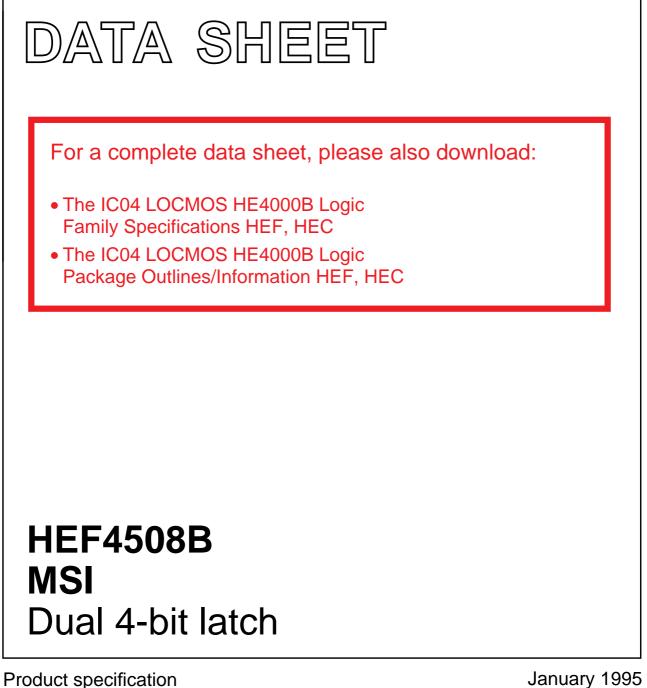
buy electronic components online now.....@ a2zelectronic.com



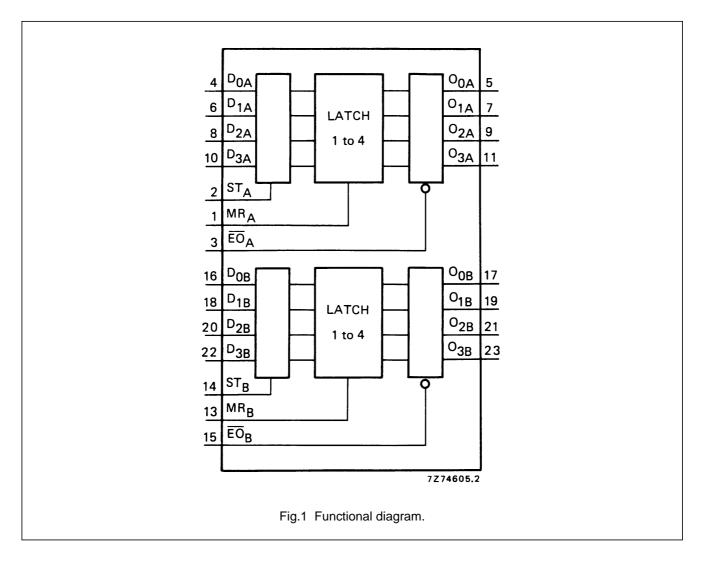
All Industrial Electronic components Available.


Capacitors (D.C. & A/C) **IGBTs MOSFETs** Semiconductors SCRs Switches

Relays Connectors **Terminal Blocks** LCD's Resistors **Transistors**, Buzzers 7 Seg LED Displays **Instrument cooling Fans Fuse & Fuse Holder MOV's, Heat Sinks, Diodes** IC's, Knob's, Trim pots, LED Power Supply...etc.,

INTEGRATED CIRCUITS

File under Integrated Circuits, IC04

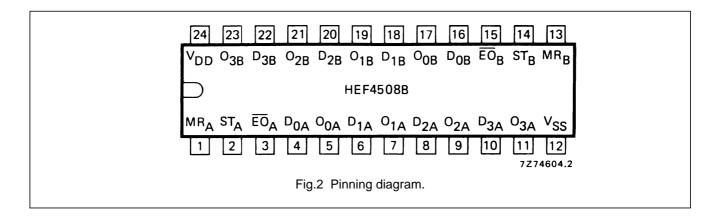


DESCRIPTION

The HEF4508B is a dual 4-bit latch, which consists of two identical independent 4-bit latches with separate strobe (ST), master reset (MR), output-enable input (\overline{EO}) and 3-state outputs (O).

With the ST input in the HIGH state, the data on the D inputs appear at the corresponding outputs provided \overline{EO} is LOW. Changing the ST input to the LOW state locks the

data into the latch. A HIGH on the reset line forces the outputs to a LOW level regardless of the state of the ST input. The 3-state outputs are controlled by the output-enable input. A HIGH on $\overline{\text{EO}}$ causes the outputs to assume a high impedance OFF-state regardless of other input conditions. This allows the outputs to interface directly with bus orientated systems. When $\overline{\text{EO}}$ is LOW the contents of the latches are available at the outputs.


FAMILY DATA, I_{DD} LIMITS category MSI

See Family Specifications

HEF4508B

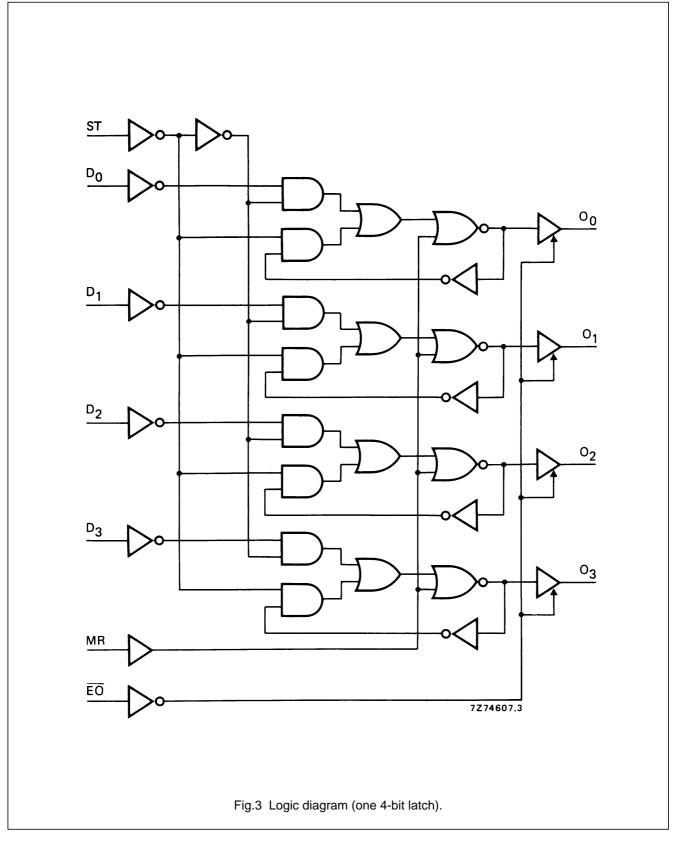
MSI

HEF4508B MSI

HEF4508BP(N):	24-lead DIL; plastic	
	(SOT101-1)	
HEF4508BD(F):	24-lead DIL; ceramic (cerdip)	
	(SOT94)	
HEF4508BT(D):	24-lead SO; plastic	
	(SOT137-1)	
(): Package Designator North America		

PINNING

D_{0A} to D_{3A} , D_{0B} to D_{3B}	data inputs
ST _A , ST _B	strobe inputs
MR _A , MR _B	master reset inputs
$\overline{EO}_A, \overline{EO}_B$	output enable inputs
O_{0A} to O_{3A},O_{0B} to O_{3B}	3-state outputs


FUNCTION TABLE

	INPUTS					
MR	ST	EO	D _n	On		
L	Н	L	Н	Н		
L	н	L	L	L		
L	L	L	X	latched		
Н	Х	L	X	L		
Х	Х	н	X	Z		

Notes

- 1. H = HIGH state (the more positive voltage)
 - L = LOW state (the less positive voltage)
 - X = state is immaterial
 - Z = high impedance OFF state

HEF4508B MSI

HEF4508B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns; see also waveforms Fig.4.

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$\text{ST} \rightarrow \text{O}_{\text{n}}$	5			115	230	ns	88 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			35	70	ns	27 ns + (0,16 ns/pF) C _L
	5			115	230	ns	88 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			35	70	ns	27 ns + (0,16 ns/pF) C _L
$D_n\toO_n$	5			95	190	ns	68 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		40	80	ns	29 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
	5			95	190	ns	68 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		40	80	ns	29 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
$MR\toO_n$	5			100	200	ns	73 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		40	80	ns	29 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
Output transition times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
3-state propagation delays Output enable times							
$\overline{\text{EO}} \to O_n$	5			45	90	ns	
HIGH	10	t _{PZH}		20	40	ns	
	15			18	36	ns	
	5			45	90	ns	
LOW	10	t _{PZL}		20	40	ns	
	15			18	36	ns	
Output disable times							
$\overline{\text{EO}} \to \text{O}_n$	5			35	70	ns	
HIGH	10	t _{PHZ}		20	40	ns	
	15			18	36	ns	
	5			45	90	ns	
LOW	10	t _{PLZ}		20	40	ns	
	15			18	36	ns	

HEF4508B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.	
Minimum ST	5		50	25	ns	
pulse width; HIGH	10	t _{WSTH}	30	15	ns	
	15		20	10	ns	
Minimum MR pulse	5		40	20	ns	
width; HIGH	10	t _{WMRH}	24	12	ns	
	15		20	10	ns	
Recovery time	5		20	0	ns	
for MR	10	t _{RMR}	20	0	ns	see also waveforms Fig.4
	15		15	0	ns	
Set-up times	5		35	10	ns	
$D_n \rightarrow ST$	10	t _{su}	25	5	ns	
	15		20	0	ns	
Hold times	5		20	0	ns	
$D_n \rightarrow ST$	10	t _{hold}	20	0	ns	
	15		15	0	ns	

	V _{DD} V	TYPICAL FORMULA FOR P (μ W)	
Dynamic power	5	$2~000~f_i + \Sigma~(f_o C_L) \times V_{DD}{}^2$	where
dissipation per	10	9 000 f _i + Σ (f _o C _L) $ imes$ V _{DD} ²	f _i = input freq. (MHz)
package (P)	15	25 000 f _i + Σ (f _o C _L) $ imes$ V _{DD} ²	f _o = output freq. (MHz)
			C_L = load capacitance (pF)
			Σ (f _o C _L) = sum of outputs
			V _{DD} = supply voltage (V)

_

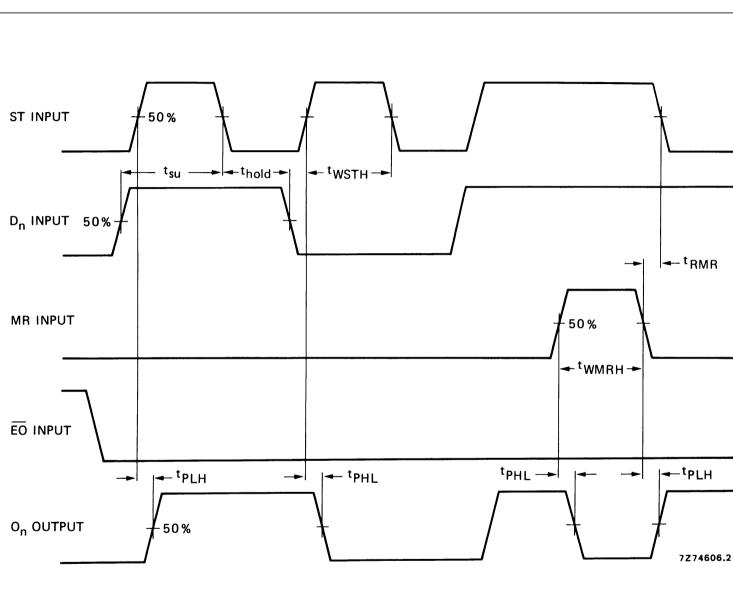


Fig.4 Waveforms showing minimum ST and MR pulse widths, set-up and hold times for D_n to ST, recovery time for MR and propagation delays from ST to O_n , to D_n to O_n and MR to O_n .

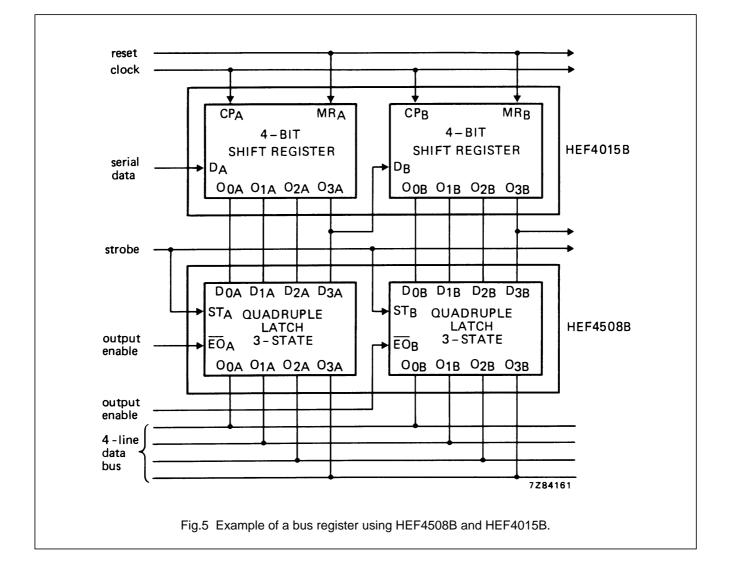
Philips Semiconductors

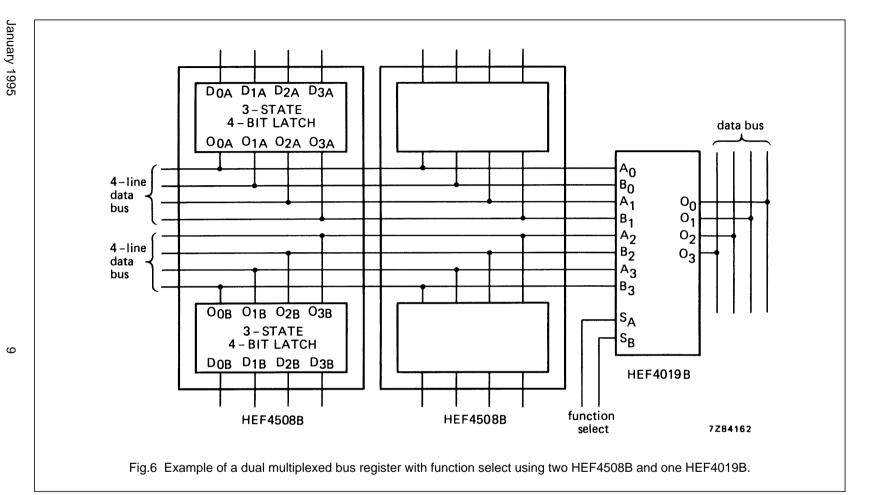
Dual 4-bit latch

Product specification

HEF4508B

ISM


7


HEF4508B MSI

APPLICATION INFORMATION

Some examples of application for the HEF4508B are:

- Buffer storage
- Holding registers
- Data storage and multiplexing

FUNCTION SELECT

SA	SB	FUNCTION
L	L	inhibit (all L)
н	L	select A bus
L	Н	select B bus
н	Н	$A_1 + B_1$

HEF4508B ISM

Product specification

Philips Semiconductors

Dual 4-bit latch

ဖ

_